Introducción y justificación: La diabetes engloba patologías debidas a alteraciones metabólicas que tienen en común la hiperglucemia. La Internacional Diabetes Federation, en 2019, indica que 463 millones de adultos padecían diabetes, y los fallecidos fueron 4,2 millones. El Proyecto Genoma Humano identificó polimorfismos que pueden determinar el genotipo y fenotipo, y por tanto la probabilidad de padecer una determinada enfermedad.
Objetivos: Examinar el efecto de posibles interacciones entre la dieta y la genética sobre la homeostasis de la glucosa, la resistencia a la insulina y el riesgo de diabetes mellitus tipo 2 (DM2).
Metodología: Se realiza una revisión de los últimos 10 años en Pubmed mediante una estrategia de búsqueda electrónica, tras la que se hace un cribado de artículos según unos criterios de inclusión y exclusión previamente definidos. La fórmula de búsqueda usada en la base de datos Pubmed es: “(gene OR SNP OR polymorphism) AND interaction AND (nutrient OR diet OR fat OR carbohydrate OR protein) AND (type 2 diabetes OR insulin resistance OR glucose OR insulin OR HOMA-IR OR HOMA beta OR HbA1C)”.
Resultados: Tras las fases de identificación, de cribado y de idoneidad, se incluyeron 25 artículos en la revisión bibliográfica. Los lípidos interaccionan con genes relacionados con el metabolismo de los ácidos grasos produciendo efectos en la DM2, en cambio la interacción que se observa con los hidratos de carbono (HC), están relacionados con la síntesis y regulación de la insulina. En el estudio de las interacciones gen-nutriente con efecto sobre la respuesta insulínica (RI), los genes tienen funciones muy diferentes y los resultados obtenidos son muy diversos.
Conclusión: Diferentes nutrientes de la dieta como los lípidos, HC, proteínas, fibra y zinc, modifican la relación con los genes TCF7L2, PPAR-γ, ACE, APOA2, SLC30A8, IRS1, ACC2, PPM1K, ELOVL6, PIK3CA-KCNMB3, IRS1, PLIN, S100A9, DHCR7, LPL ADIPOQ y FTO con el riesgo de DM2, la resistencia a la insulina o marcadores de la homeostasis de la glucosa.
Palabras clave: gen, polimorfismo, interacción, nutriente, dieta, grasa, carbohidratos, proteína, diabetes tipo 2, resistencia a la insulina, glucosa, insulina.
Introduction and justification: Diabetes includes pathologies due to metabolic disorders that have in common hyperglycemia. The International Diabetes Federation, in 2019, indicates that 463 million adults had diabetes, and the deaths were 4.2 million. The Human Genome Project identified polymorphisms that can determine the genotype and phenotype, and therefore the probability of suffering from a certain disease.
Objectives: To examine the effect of possible interactions between diet and genetics on glucose homeostasis, insulin resistance and risk of type 2 diabetes mellitus (DM2).
Methodology: A review of the last 10 years at Pubmed is carried out using an electronic search strategy, after which articles are screened according to previously defined inclusion and exclusion criteria. The search formula used in the Pubmed database is: "(gene OR SNP OR polymorphism) AND interaction AND (nutrient OR diet OR fat OR carbohydrate OR protein) AND (type 2 diabetes OR insulin resistance OR glucose OR insulin OR HOMA-IR OR HOMA beta OR HbA1C)".
Results: After the identification, screening and suitability phases, 25 articles were included in the literature review. Lipids interact with genes related to the metabolism of fatty acids producing effects on DM2, whereas the interaction observed with carbohydrates (HC), are related to the synthesis and regulation of insulin. In the study of gene-nutrient interactions with effect on insulin response (IR), genes have very different functions and the results obtained are very diverse.
Conclusion: Different dietary nutrients such as lipids, HC, proteins, fiber and zinc, modify the relationship with TCF7L2, PPAR-γ, ACE, APOA2, SLC30A8, IRS1, ACC2, PPM1K, ELOVL6, PIK3CA-KCNMB3, IRS1, PLIN, S100A9, DHCR7, LPL ADIPOQ and FTO genes with the risk of DM2, insulin resistance or glucose homeostasis markers.
Keywords: gene, polymorphism, interaction, nutrient, diet, fat, carbohydrates, protein, type 2 diabetes, insulin resistance, glucose, insulin.
La Organización Mundial de la Salud (OMS) define la diabetes como un conjunto de patologías metabólicas cuya principal característica es la hiperglucemia debida a defectos en la secreción y/o acción de la insulina (1). En función del tiempo que se prolongue esta situación de hiperglucemia, y de su gravedad, pueden aparecer multitud de complicaciones a distintos niveles (1):
Figura 1. Principales complicaciones de la diabetes. Fuente: Organización Mundial de la Salud. Informe Mundial sobre la Diabetes. 2016. American Diabetes Association. Diabetes Care. 2016; 39(1): 13-22 (1)
La American Diabetes Association (ADA) clasifica la diabetes según su etiología en (2):
Actualmente, los criterios diagnósticos que se usan en la práctica clínica se basan en la ADA, y se resumen en la tabla 1 (2):
Fuente: American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2016; 39(1): 13-22. (2) HbA1C: Hemoglobina glucosilada; TSOG: Test sobrecarga oral de glucosa. (2)
El término prediabetes hace referencia a la probabilidad de padecer diabetes, el cual va relacionado con factores de riesgo tales como las enfermedades cardiovasculares (ECV), obesidad, dislipemia o hipertensión arterial (HTA); se acuñó por primera vez en 1997 por la ADA, y viene definida por los siguientes criterios: (3)
El hecho de que la diabetes resulte asintomática inicialmente y produzca las complicaciones características en la fase de diagnóstico, junto con una mejora del pronóstico en la aplicación del tratamiento, hace necesario instaurar un sistema de cribado de la misma, que según la ADA lo recomienda en función de los siguientes criterios que se recogen en la tabla 2 (2):
Fuente: American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2016; 39(1): p. 13-22. (2) IMC: Índice de masa corporal; HTA: Hipertensión arterial; HDL: High density lipoprotein; HbA1C: Hemoglobina glucosilada; GAA: Glucemia alterada en ayunas. (2)
Multitud de estudios muestran evidencias que la DM2 es una enfermedad compleja, resultante de la interacción de factores genéticos, epigenéticos, ambientales y de estilo de vida; así, los nutrientes y los patrones dietéticos son factores muy importante a tener en cuenta tanto en la prevención, como en el desarrollo y tratamiento de la enfermedad (3). Como enfermedad crónica, de etiología multifactorial, y debido a los altos valores de incidencia y prevalencia, produce un gran impacto sobre los sistemas sanitarios, por lo que resulta fundamental disponer de datos epidemiológicos actualizados y precisos (2).
Según la International Diabetes Federation (IDF), 463 millones de adultos con una edad comprendida entre los 20 y 79 años padecían diabetes en 2019, esto es, una prevalencia a nivel mundial de 9,3%, de los cuales el 79,4% residían en países con ingresos bajos o medios. El número de fallecidos en ese año por diabetes fue de 4,2 millones de diabéticos, y en general supuso un gasto a nivel mundial de 760,3 billones de dólares. Se estima que estos valores vayan en aumento, de manera que en 2030 habrá 578,4 millones de diabéticos (con una prevalencia del 10,2%) y en 2045 700,2 millones de diabéticos (con una prevalencia del 10,9%); lo cual dispara el gasto sanitario a 845 billones de dólares (4). En la figura 2 se muestra la distribución de enfermos diabéticos con una edad comprendida entre los 20 y 79 años, por países a nivel mundial.
Figura 2. Distribución mundial de diabéticos entre 20-79 años en 2019. Fuente: International Diabetes Federation. Diabetes: Atlas de la FID. 9ª Edición. [Internet]. 2019. [Actualizado 2019; consultado 5 mayo 2020]. Disponible en: https://www.diabetesatlas.org/upload/resources/material/20200302_133352_2406-IDF-ATLAS-SPAN-BOOK.pdf (4)
Este incremento de la incidencia de la diabetes en los últimos años se debe a varios factores, entre los que destacan (5):
El origen de la DM2 es poligénico y multifactorial, y se desarrolla principalmente por:
Así, un aumento de la resistencia a la insulina (RI) produce un incremento de la secreción de ésta por parte del páncreas como mecanismos de control para mantener la homeostasis de glucosa en sangre; si a esto añadimos que las células β no son capaces de crear una cantidad adecuada de esta hormona, el resultado es que los niveles de glucosa plasmáticos comienzan a subir. La interacción de los genes con los factores ambientales es decisiva en estos dos hechos (5).
La DM2 tradicionalmente se ha considerado una enfermedad de adultos, asociada fundamentalmente a estilos de vida inapropiados, sin embargo, en los últimos años se observa un incremento de casos en niños y adolescentes (5). Es una enfermedad muy compleja, en la que una combinación de factores genéticos, epigenéticos, ambientales y estilos de vida, juegan un papel decisivo en su inicio y desarrollo (6).
En general, en los pacientes diabéticos, se observa una disminución tanto del número de células β como de su actividad, cuyas principales causas son (5):
Figura 3. Resumen de las causas que afectan a las células β. Menéndez E, Barrio R, Novials A. Tratado de Diabetes Mellitus. 2ª ed. Madrid: Editorial Médica Panamericana; 2017 (3). UPR: Unfolded protein response: ROS: Reactive oxygen species; JNK: Jun N-terminal kinase; NF-κB: Nuclear factor kappa B; IL-18: Interleucina 18; FFA: Free fatty acids
En la evolución de la enfermedad, se observa un aumento progresivo de la RI, hasta el punto en el que las células β dejan de secretar insulina; las principales causas de este efecto se resumen en (3):
En la figura 4 se resumen las causas que provocan la RI, y los efectos que se producen en los órganos más afectados por esta situación.
Figura 4. Resumen de las causas que afectan a la RI. Menéndez E, Barrio R, Novials A. Tratado de Diabetes Mellitus. 2ª ed. Madrid: Editorial Médica Panamericana; 2017 (3). SNC: Sistema Nervioso Central; FFA: Free Fatty Acids.
El tratamiento de la DM2 tiene en su base una estrategia dietética adecuada y la actividad física, y ambas deben prescribirse por parte del profesional sanitario de forma individualizada, teniendo en cuenta el tipo y la evolución de la patología, el posible tratamiento farmacológico propuesto y las complicaciones o comorbilidades que puede sufrir (3).
La terapia nutricional debe cumplir los siguientes objetivos:
La estrategia más habitual en la práctica clínica es la dieta por intercambios de hidratos de carbono, elaborada por la ADA, la cual permite la planificación dietética por parte del paciente y en función de sus gustos o preferencias (3).
La prescripción de la actividad física debe estar presente en el tratamiento del paciente diabético, y aunque produce efectos muy beneficiosos para éste se debe tener en cuenta que pueden aparecer algunos efectos adversos, por eso deberá planificarse en función de su condición física y estado de salud. El objetivo que debe cumplir el ejercicio físico es mejorar fundamentalmente la resistencia aeróbica y la fuerza física (3).
Los tratamientos farmacológicos usados para la diabetes tienen como objetivo principal la regulación de las posibles alteraciones. Se resumen en (3):
Con la evolución de la enfermedad, el tratamiento con un único fármaco no es suficiente para paliar las complicaciones metabólicas, por lo que es habitual la terapia combinada; en la figura 5 se representa el algoritmo de manejo terapéutico propuesto por la ADA (5,7):
Figura 5. Algoritmo de tratamiento farmacológico. Documento ADA/EASD. Fuente: Mata M. Metformina y diabetes mellitus tipo 2. Aten Primaria. 2008; 40(3): 47-53 (7). HbA1C: Hemoglobina glucosilada.
Para entender las interacciones que se producen entre los nutrientes de la dieta y el genoma, y sus posibles efectos en la salud del sujeto, es necesario conocer en primer lugar cómo se organiza la información en el interior del núcleo (8).
El genoma humano está constituido por unas 3,3 · 109 pares de bases, sin embargo sólo una pequeña fracción se expresa en proteína, es decir es ADN codificante (en torno al 4%); el resto es ADN no codificante. El 25 % de este ADN no codificante se trata de intrones y otras secuencias reguladoras, relacionada con los genes. La gran parte del ADN, que constituye un 70%, es ADN extragénico, el cual aún no se conoce qué función realiza (8).
El análisis de la organización del genoma se puede realizar en función de distintos criterios, siendo el más habitual la repetitividad, el cual nos permite diferenciar varios tipos se secuencias (8,9):
Figura 6. Organización del genoma humano basada en la repetitividad de las secuencias y en su carácter codificante. Fuente: Elaboración propia.
Un aporte muy importante del estudio del genoma humano fue descubrir que existen multitud de secuencias de genes distintas entre individuos, las cuales crean las diferencias fenotípicas que visualizamos; éstos son los polimorfismos. Así podemos definir los polimorfismos como variaciones en las secuencia de un locus específico, con una incidencia en la población mayor del 1% (9). Éstos se pueden dividir en (9):
La revista Nature en 2015 publicó un informe a partir del análisis del genoma de 2.504 sujetos de 26 poblaciones distintas en el que se identificaron 88 millones de variantes: 84,7 millones de tipo SNP, 3,6 millones inserciones/delecciones pequeñas (indels) y 60 mil variaciones estructurales de tipo delecciones, inserciones, duplicaciones, inversiones y translocaciones de secuencias del genoma (8). Este informe concluye que los SNP son los polimorfismos más numerosos en el genoma y se sitúan en locus específicos, y que la mayoría se encuentran en todo tipo de poblaciones, de manera que se pueden determinar el genotipo individual y el fenotipo de cada persona, incluyendo la probabilidad de padecer una determinada enfermedad. Otro concepto importante en esta revisión es el de haplotipo, definido como un conjunto de SNPs situados en una región de un cromosoma (8).
En el contexto de la presente revisión se puede definir la genómica nutricional como la ciencia que estudia las interacciones moleculares que se producen entre los componentes de los alimentos, tanto nutrientes como no nutrientes, y el propio genoma, y como éstas influye sobre el estado de salud del individuo. Esto es, todos los procesos que se producen hasta que los nutrientes y otros componente no nutritivos se liberan de la matriz que constituyen los alimentos hasta que están disponible para el organismos (digestión, absorción y metabolismo) (10).
Figura 7. Relación entre genómica nutricional, nutrigenética y nutrigenómica. Fuente: Gómez AE. Nutrigenómica y nutrigenética. Offarm. 2007; 26(4): p. 78-85 (11).
El estudio de los SNP, copy number variation (CVN) y demás variantes, reflejan que hay determinadas variantes en el genoma de los sujetos que afectan a la interacción entre los componentes de los alimentos de la dieta y el metabolismo, lo cual determina un mayor o menor riesgo de padecer determinadas enfermedades. El estudio de estas variaciones genéticas a nivel individual y su influencia en el metabolismo de los nutrientes es el objetivo de la nutrigenética (10). Se define nutrigenética como el estudio de las interacciones entre estas variantes genéticas de cada individuo y la utilización metabólica de los nutrientes de la dieta; este conocimiento nos permite redactar estrategias dietéticas individualizadas y no recomendaciones generales basadas en estudios epidemiológicos (11). En cambio, la nutrigenómica estudia las interacciones que producen los nutrientes y otros compuestos bioactivos de los alimentos en la expresión génica (11).
Las ciencias “ómicas” han sido fundamentales a la hora de proporcionar tanto la tecnología como la metodología para estudiar este tipo de interacciones, y de esta forma poder aplicarlas al campo de la nutrición individualizada. La transcriptómica resulta una herramienta básica para la genómica nutricional en el estudio de la interacción de los nutrientes en la expresión de los genes, además ha ayudado en la identificación de genes involucrados a través de arrays que contienen todos los genes (12).
Se puede decir que la mayoría de las patologías se deben a alteraciones bioquímicas, y por tanto son el origen de la enfermedad, la cual a su vez produce las manifestaciones clínicas o síntomas (10).
En general las patología se pueden clasificar en: 1) genéticas, de origen puramente bioquímico y son debidas a una alteración en el ADN; 2) adquiridas, de origen multifactorial, debido a la exposición ante agentes químicos, físicos o biológicos; 3) mixtas, que son las más frecuentes y en cuya categoría se encuadran la obesidad, la diabetes, la HTA, las ECV, etc. (10). El resultado de multitud de estudios realizados a partir del “Proyecto Genoma Humano”, a inicios del siglo XXI, permite identificar en la actualidad tres tipos de enfermedades de origen genético: las enfermedades monogenéticas (debidas a un sólo gen, en el que hay una mutación o variación en la secuencia de nucleótidos), las enfermedades cromosómicas (debidas a alteraciones en el número y/o estructura de uno o varios cromosomas de nuestro cariotipo) y las enfermedades poligenéticas (de origen multifactorial) (13).
La diabetes se enmarca dentro de un grupo de alteraciones muy heterogéneo desde el punto de vista metabólico, debido a que existe cierto grado de predisposición hereditaria y a la actuación de distintos factores ambientales (14). Como se ha descrito anteriormente, tanto la DM1 como la DM2 son patologías debidas a la intervención de multitud de genes, es decir, tienen un origen poligenético, a diferencia de la diabetes monogenética que resulta de la herencia de una mutación (dominante o recesiva), o de una nueva mutación en un gen; estas últimas se producen por defectos genéticas de las células β o de la acción de la insulina (14).
Las patologías hereditarias son debidas a alteraciones genéticas que se transmiten de generación en generación, así en las enfermedades monogenéticas el fenotipo del paciente es aparente, y la relación gen-patología fácilmente detectable (15). En cambio en las enfermedades poligenéticas, las posibles mutaciones origen de las mismas, se localizan en más de un gen, y así la alteración se presenta como el resultado de un conjunto de alteraciones, originando enfermedades muy complejas y multifactoriales (15).
Los avances de los últimos años a nivel molecular de las alteraciones a nivel cromosómico de las células β han identificado distintas mutaciones responsables de la diabetes de origen monogenético, y además han permitido explicar los mecanismos de excreción y acción de la insulina; así tenemos (15):
Los genome-wide association study (GWAS) han identificado numerosos loci involucrados en el desarrollo de la DM2, para los cuales se analiza su funcionalidad y el nivel de expresión del gen en el tejido específico a través de la cuantificación de la proteína a la que se traduce; esto permite la discriminación sobre la contribución de la causa a la enfermedad o su asociación (16).
La DM2 es debida a una combinación de factores genéticos y de estilo de vida, algunos de los cuales aún no se han identificado. Se conocen más de 150 variaciones en el ADN asociadas con el riesgo de padecer DM2, sin embargo muchas de ellas son habituales y se encuentran tanto en personas sanas como diabéticas, además existen polimorfismos que aumentan el riesgo y otros que contrariamente lo reducen (15). Se piensa que la mayoría de las variaciones genéticas relacionadas con la DM2 afectan a la expresión de los genes implicados en multitud de aspectos de la patología, desde el desarrollo y función de las células β, hasta la liberación y procesamiento de la insulina, y la sensibilidad de las células a dicha hormona. Tanto la secreción de la insulina como la acción de su receptor se encuentran bajo control genético, pero además la expresión genotípica de los defectos genéticos que producen las alteraciones en estas funciones se encuentra modulada por multitud de factores ambientales (15). Aún así, la existencia de estas variantes solo pueden explicar entre aproximadamente el 10-15% de la heredabilidad de la enfermedad (16).
Además, en los últimos años se han descrito elementos epigenéticos con función reguladora de la expresión génica en DM2, los cuales a su vez pueden estar influenciadas por factores ambientales que finalmente tienen un impacto en el riesgo de DM2 (17).
Las interacciones entre nutrientes y genes, así como la relación entre la carga genética individual y la dieta, juegan un papel importante en la fisiopatología de la DM2 (17). Por lo tanto, un mejor conocimiento de la nutrigenómica y nutrigenética de la DM2, junto con una mejor comprensión de los factores epigenéticas son fundamentales para la prevención, detección y tratamiento de la enfermedad (18).
La nutrición juega un papel importante en la patogenia de la DM2, ya que los nutrientes que contienen los alimentos conducen a una regulación de los genes y a cambios en niveles de expresión de proteínas (18). La interacción gen-nutriente puede modular la expresión del gen a través de diferentes mecanismos:1) directamente; (2) a través de sus metabolitos; (3) al activar diversas moléculas de señalización de rutas metabólicas complejas (20).
La DM2 se trata de una pandemia para la cual no existe actualmente curación, y en función de su evolución y del control de la hiperglucemia instaurada, así será su pronóstico. Sin embargo este es un proceso largo, de carácter multidisplinar que requiere la actuación de multitud de profesionales sanitarios, y en muchas ocasiones una mala coordinación de éstos producen el empeoramiento del paciente diabético. Esta situación genera una merma en la calidad de vida del paciente, y a su vez repercute a nivel personal-familiar, laboral, y social, aumentando el gasto sanitario de forma directa e indirecta. Así podemos decir que es uno de los problemas más graves para los sistemas sanitarios por su elevada morbimortalidad y el gasto económico.
A partir de los resultados del Proyecto Genoma Humano y del descubrimiento de todas aquellas variaciones a nivel genético que se relaciona con determinados fenotipos, se permite realizar un estudio de las potenciales interacciones entre los componentes de los alimentos que se incorporan al organismos a través de la dieta y aquellos genes relacionados con el metabolismo principalmente de hidratos de carbono, pero también lipídico y de proteínas que están involucrados en esta patología, considerada en la actualidad como un grave problema de salud pública.
Como ya se indicado en apartados anteriores, tanto el inicio como el desarrollo de la DM2, se debe a una combinación de factores genéticos, epigenéticos y ambientales (de estos últimos, los más destacables son los hábitos de alimentación), por tanto se hace necesaria la identificación y el análisis detallado de las interacciones de la genética con los nutrientes, de manera que por un lado se puedan modificar determinados hábitos alimentarios y por otro lado ayude en la comprensión del mecanismo intrínseco de la enfermedad.
Objetivo general
El objetivo principal de la presente revisión bibliográfica es examinar los posibles efectos que produce la interacción de los nutrientes procedentes de la dieta con la genética sobre el riesgo de DM2 y parámetros del metabolismo glucídico.
Objetivos específicos
Los objetivos específicos son:
Se ha realizado una revisión bibliográfica sobre las posibles interacciones que se producen entre los nutrientes, tanto macro como micronutrientes, con los genes, y cómo éstas afectan al riesgo de DM2 y el metabolismo glucídico.
Para realizar la revisión bibliográfica se ha empleado la base de datos Pubmed, una de las bases de fuentes bibliográficas médicas más importante, y se ha basado en estudios publicados en los últimos 10 años.
En la selección de los estudios que se han incluido en la revisión bibliográfica se ha seguido las normas de referencia para las revisiones sistemáticas y meta-análisis: la declaración PRISMA (preferred reporting items for systematic reviews and meta-analyses) (21).
Los criterios de inclusión fueron:
Y lo criterios de exclusión fueron:
La estrategia de búsqueda usada en la bases de datos Pubmed, filtrando inicialmente el periodo de tiempo indicado en el apartado anterior y los estudios realizados en humanos, es: “(gene OR SNP OR polymorphism) AND interaction AND (nutrient OR diet OR fat OR carbohydrate OR protein) AND (type 2 diabetes OR insulin resistance OR glucose OR insulin OR HOMA-IR OR HOMA beta OR HbA1C)”.
Basado en las normas de la Declaración PRISMA, se distingue una primera fase de identificación, que consiste en la introducción de la estrategia electrónica en Pubmed.
En una segunda fase de cribado, se procede a la lectura de título y abstract de los artículos, y teniendo en cuenta tanto los criterios de inclusión como los criterios de exclusión definidos en el apartado “3.2 Criterios de selección”, se seleccionan aquellos que formarán parte de la revisión y otros pasaran a una tercera fase donde se analizarán con más detalle; el resto se excluyen al no cumplir dichos criterios.
En una tercera fase de idoneidad, tras un análisis más detallado, y teniendo en cuenta nuevamente los criterios de selección citados, se decide si se incluyen para formar parte del análisis de la revisión, y el resto se excluyen al no cumplir dichos criterios.
Para el análisis y posterior evolución de todos los artículos obtenidos desde la fase inicial de identificación hasta la fase final de idoneidad, se realizó una tabla en Excel, como se muestra en la tabla 3.
Fuente: Elaboración propia.
Para facilitar la comprensión de los resultados obtenidos de los artículos incluidos en la presente revisión bibliográfica se han diseñado 5 tablas.
En la tabla 4 se resumen las principales características de la población de cada uno de los estudios que se han incluido en la revisión. Los datos que se incluyen son la referencia del artículo (primer autor y año de publicación), el/los país/es donde se realiza el estudio, el tamaño de muestra, el sexo, la edad y la raza de los sujetos, y otras características destacadas de los mismos.
Los resultados obtenidos del análisis de las interacciones entre genes y nutrientes relacionados con la DM2 y el metabolismo glucídico se resumen en tres tablas en función de si el efecto de la interacción gen-nutriente se relaciona con el riesgo de DM2 (tabla 5), con la RI (tabla 6) o con la homeostasis de la glucosa (tabla 7). Cada una de las tablas se divide en 6 columnas en las cuales se detalla la siguiente información: la referencia del artículo (primer autor y año de publicación), el/los gen/es, el/los polimorfismo/s, los nutrientes involucrados en la interacción, el valor p de la interacción, y en caso de que la interacción fuese estadísticamente significativa se señala el efecto de la ingesta de cada nutriente sobre el fenotipo de interés.
Por último, en la tabla 8, se detallan las principales funciones que ejercen los genes tratados en la interacción con los nutrientes de la dieta.
En este primer apartado se hace un análisis en profundidad sobre la aplicación tanto de los criterios de inclusión como de exclusión que se han definido inicialmente, en el proceso de selección de los distintos artículos de la revisión bibliográfica y se resumen los resultados obtenidos a lo largo de dicho proceso (figura 8).
Figura 8. Diagrama de flujo resumen del proceso de selección de los artículos incluidos en la revisión bibliográfica según la declaración PRISMA para Revisiones Sistemáticas y Meta-análisis (adaptado). Fuente: Elaboración propia. (21)
En la primera fase de identificación, tras la introducción de la estrategia de búsqueda electrónica en Pubmed se obtienen un total de 2.217 referencias bibliográficas.
En la segunda fase de cribado, tras un primer análisis de los 2.217 artículos, tenemos que: 21 artículos se incluyen directamente a la revisión, 47 artículos necesitan un análisis más detallado; el resto, un total 2149 artículos, se excluyen al no cumplir los criterios de inclusión definidos, (figura 9):
Figura 9. Distribución de artículos excluidos por criterios de exclusión durante la fase de cribado. Fuente: Elaboración propia.
En la tercera fase de idoneidad, tras un análisis más exhaustivo del texto de los 47 artículos de la fase anterior, el resultado que se obtiene es que 4 artículos se incluyen directamente a la revisión, y los restantes 43 artículos se excluyen al no cumplir los criterios de inclusión definidos (figura 10):
Figura 10. Distribución de artículos no incluidos por criterios de exclusión durante la fase de idoneidad. Fuente: Elaboración propia.
Tras el análisis de las tres fases anteriores, el resultado en la fase de inclusión es de 25 artículos que se incluyen en el análisis de la revisión bibliográfica.
En la tabla 4 se resumen las principales características de la población objeto de estudio de los 25 artículos seleccionados para la revisión bibliográfica.
En relación al origen de la población en el análisis de la revisión, se observa que de los 25 artículos, en 9 participan individuos americanos (22, 26, 28, 33, 34, 35, 37, 38, 39), en 10 europeos (23, 25, 27, 29, 30, 31, 32, 44, 45, 46), en 4 asiáticos (36, 40, 42, 43); en 1 europeos y asiáticos (24), y en 1 europeos y americanos (41).
Respecto al sexo, todos los estudios se realizan en hombre y mujeres, con un rango de edad muy amplio, que abarca desde los 18 hasta los 92 años.
En cuanto a la raza, en 6 artículos participan individuos caucásicos (22, 25, 29, 44, 45, 46), en 7 predominantemente blancos (26, 28, 33, 34, 35, 38, 39), en 3 asiáticos (36, 40, 42), en 1 caucásicos y asiáticos (24), en 1 blancos y negros no hispanos (37), en 1 caucásicos y afroamericanos (41); en los 6 restantes no se especificaba la etnia (26, 28, 33, 34, 35, 38, 39).
Con respecto al tamaño de muestra, 12 de los 25 artículos analizados cuentan con una n > 1000 individuos, y los 13 restantes con una n < 1000 individuos.
Por último indicar que según las características de la población, la mayoría de los estudios, concretamente 10, se centran en sujetos con sobrepeso y/u obesidad (25, 26, 28, 29, 33, 34, 35, 37, 38, 39); 7 lo hacen en diabéticos y no diabéticos (22, 27, 31, 36, 41, 42, 45), 4 en sujetos en riesgo o con síndrome metabólico (SM) (23, 40, 43, 46); 3 en sujetos sanos (30, 32, 44) y 1 con otras patologías como ECV (24).
Tabla 4. Resumen de las características de la población de estudio de los artículos incluidos en la revisión bibliográfica. |
||||||
Referencia |
País/es |
Tamaño muestral |
Edad (años) |
Sexo |
Raza |
Características poblacionales |
Ruchat S-M et al. 2010 (22) |
Quebec |
669 |
40,59 ± 14,79 |
H/M |
Caucásicos |
Diabéticos y no diabéticos, con sobrepeso |
Phillips CM et al. 2010 (23) |
Francia |
13.000 |
35-65 |
H/M |
N/E |
Sanos y SM |
Corella D et al. 2011 (24) |
España, China, Malasia, India |
4.112 |
18-80 |
H/M |
Caucásico y asiáticos |
Mediterráneos con riesgo ECV |
Morcillo S et al. 2011 (25) |
España |
824 |
>18 |
H/M |
Caucásico |
Sobrepeso |
Qi Q et al. 2011 (26) |
EEUU |
811 |
30-70 |
H/M |
Predominantemente blancos |
Sobrepeso y obesidad |
Lamri A et al. 2012 (27) |
Francia |
4.676 |
30-65 |
H/M |
N/E |
Sanos y diabéticos |
Smith CE et al. 2012 (28) |
EEUU |
970 |
17-92 |
H/M |
Predominantemente blancos |
Sobrepeso y obesidad |
Mansego ML et al. 2012 (29) |
España |
2.022 |
54 ± 16,06 |
H/M |
Caucásicos |
Sobrepeso y obesidad |
Hindy G et al. 2012 (30) |
Suecia |
24.799 |
>18 |
H/M |
N/E |
No diabéticos |
Ortega-Azorín C et al 2012 (31) |
España |
7.052 |
55-80 |
H/M |
N/E |
Diabéticos y no diabéticos |
Ericson U et al. 2013 (32) |
Suecia |
24.841 |
45-74 |
H/M |
N/E |
Sanos |
Xu M et al. 2013 (33) |
EEUU |
734 |
51± 9 |
H/M |
Predominantemente blancos |
Sobrepeso y obesidad |
Zheng JS et al. 2013 (34, 35) |
Boston, Puerto Rico |
1.664 |
H: 48,8±15,9; M:49,0±16,1 H: 57,6±7,7; M:58,1±7,1 |
H/M |
Predominantemente blancos |
Sobrepeso y obesidad |
Hwang J-Y et al. 2013 (36) |
Corea |
673 |
40-85 |
H/M |
Asiáticos |
Diabéticos |
Villegas R et al. 2014 (37) |
EEUU |
13.120 |
18-90 |
H/M |
Blancos y negros no hispanos |
Sobrepeso y obesidad |
Zheng Y et al. 2015 (38) |
EEUU |
743 |
30-70 |
H/M |
Predominantemente blancos |
Sobrepeso y obesidad |
Qi Q et al. 2015 (39) |
EEUU |
732 |
30-70 |
H/M |
Predominantemente blancos |
Sobrepeso y obesidad |
Zhang S et al. 2015 (40) |
Shanghái |
235 |
31-65 |
H/M |
Asiáticos |
Pacientes con SM |
Blanco-Rojo R et al. 2016 (41) |
España, EEUU |
4.728 |
≥18 |
H/M |
Caucásicos, afroamericanos. |
Diabéticos y no diabéticos |
Kim J et al. 2017 (42) |
Corea |
7.935 |
≥18 |
H/M |
Asiáticos |
Diabéticos y no diabéticos |
Hosseini-Esfahani F et al. 2017 (43) |
Irán |
817 |
≥18 |
H/M |
N/E |
Sanos y pacientes con SM |
Schüler R et al. 2017 (44) |
Alemania |
92 |
31 ± 14 |
H/M |
Caucásicos |
46 pares gemelos, sanos |
Meidtner K et al. 2018 (45) |
Europa |
12.301 |
46,5-59,3 |
H/M |
Caucásicos |
Diabéticos y no diabéticos |
Griffin BA et al. 2018 (46) |
Reino Unido |
469 |
30-70 |
H/M |
Caucásicos |
Riesgo de SM |
Fuente: Elaboración propia. H/M: Hombre y mujer; N/E: No especificado; SM: Síndrome metabólico.
Se identificaron 12 artículos que estudiaron el efecto de la interacción gen-nutriente sobre el riesgo de DM2, de los cuales 7 reflejaron interacciones estadísticamente significativas y por el contrario los 5 restantes no (tabla 5).
En relación a los lípidos, se sabe que además del aporte energético, funcionan a nivel metabólico como traductores de señal, de manera que dietas ricas en determinados tipos de ácidos grasos, contribuyen a la aparición de trastornos como la obesidad o la DM2; esta respuesta metabólica está influenciada por factores tanto ambientales como genéticos (27).
De los 8 artículos que estudiaron la interacción de la genética con los ácidos grasos, 6 artículos hacen referencia a lípidos totales (22, 27, 29, 30, 32, 44), 1 artículo estudia la interacción con ácidos grasos saturados (AGS) (24) y 1 artículo lo hace con ácidos grasos poliinsaturados (AGPI) n-3 (43).
Ruchat SM et al. (22) observaron una interacción estadísticamente significativa entre el polimorfismo rs12573128 y la ingesta de lípidos totales sobre el riesgo de DM2. Los autores hallaron una relación estadísticamente significativa en homocigotos del alelo recesivo A para este polimorfismo, en los cuales cuando en su dieta ingerían un porcentaje de lípidos inferior o igual al 31,4% del total de la ingesta calórica, disminuía el riesgo de padecer la enfermedad, con respecto a los portadores del alelo dominante (22). Por el contario, en el estudio de Hindy G et al. (30) no se observó una interacción estadísticamente significativa entre la ingesta de grasas y el gen TCF7L2 sobre el riesgo de DM2. A diferencia del estudio de Ruchat el al. (22) en este segundo estudio se analizó el polimorfismo rs7903146 en lugar del rs12573128.
Ericson U et al. (32) observaron una interacción significativa entre el polimorfismo rs2943641 y los lípidos totales sobre el riesgo de DM2 solo entre los hombres. Los sujetos TT a menor ingesta de lípidos mostraron un menor riesgo de DM2 a diferencia de los sujetos CC y CT.
Continuando con el análisis de los lípidos totales con respecto al aumento de la incidencia de la DM2, Lamri et al. (27), en su estudio pone de manifiesto la interacción entre dos polimorfismos del gen PPARγ y los ácidos grasos, y su efecto en el aumento de la patología (SNPs Pro12Ala y 1431C4T). Estos autores encontraron interacciones significativas en su estudio realizado en 4.676 franceses (estudio DESIR), de manera que los homocigotos ProPro y CC de los respectivos polimorfismos, a mayor ingesta de grasas presentaban un mayor riesgo de padecer diabetes.
Para terminar con la interacción de genes relacionados con la DM2 y los lípidos totales, el estudio de Schüler R et al. (44), evidencia el papel del sistema endocrino renina-angiotensina en la modulación del metabolismo de la glucosa, y por tanto su participación en la DM2. Su estudio se basó en una población de 92 individuos (46 pares de gemelos, estudio NUGAT), y el resultado que se obtuvo fue que los homocigotos GG para el SNP rs4343 del gen ACE, a mayor ingesta de grasa, mayor incidencia de DM2 con respecto a los portadores del alelo A.
Lamri A et al. (27) y Schüler R et al. (44) proponen un aumento de DM2 ante altas ingesta de lípidos totales en homocigotos ProPro y CC para el gen PPARγ y los polimorfismos Pro12Ala y 1431C>T, y homocigotos GG para el gen ACE, respectivamente.
Por el contrario, Mansego et al. (29) no encontraron interacciones significativas entre el SNP rs2197076 del gen FABP y los lípidos de la dieta.
En el estudio de Corella et al. (24) se centraron en la interacción de un tipo concreto de ácidos grasos, los AGS, y el polimorfismo −265T>C (rs5082) del gen APOA2, en dos poblaciones de diferente etnia: caucásicos y asiáticos. Solo encontraron una interacción estadísticamente significativa en la población asiática. Los autores observaron que los sujetos CC a mayor ingesta de AGS mayor riesgo de DM2 mientras que esta asociación no se observó en el resto de sujetos. En la misma línea de analizar la interacción con un determinado tipo de ácido graso, Hosseini-Esfahani F et al. (43), encontraron una interacción estadísticamente significativa entre el SNP rs1326634C>T del gen SLC30A8 y la ingesta de AGPI n-3, que influye sobre la incidencia de la patología. Así, los homocigotos CC del polimorfismo, a mayor ingesta de AGPI n-3, presentaban un menor riesgo de DM2; no se observa interacción significativa para los portadores del alelo T.
En 2 artículos, Ericson U et al. (32) Hindy G et al. (30), estudiaron interacciones entre los genes y los macronutrientes. Ericson U et al. (32), analizaron la interacción entre el SNP rs2943641 del gen IRS1, responsable de desencadenar la acción de la insulina, y los distintos macronutrientes de la dieta (incluida la fibra), y su efecto sobre la incidencia de la DM2 en la cohorte MDCS (ya usada para otros estudios como el propuesto por Hindy et al. (30)). Los resultados que se obtuvieron son que el alelo recesivo T ofrecía un “efecto protector” en general sobre los portadores de C, pero existían diferencias en cuanto al género y al macronutriente ingerido: así se observó un menor riesgo de padecer DM2 en las mujeres homocigotas TT ante una menor ingesta de hidratos de carbono (HC); en cambio este efecto se observó en hombre homocigotos TT ante una menor ingesta de lípidos. Para el resto de macronutrientes no se observó ninguna interacción significativa. Hindy G et al. (30), en un estudio realizado en una cohorte de 24.799 individuos no diabéticos (Malmö Diet and Cancer Study (MDCS)), investigaron la interacción entre los macronutrientes y la fibra, y el polimorfismo rs7903146, con respecto a la incidencia de DM2. Descubrieron interacciones estadísticamente significativas para la ingesta de fibra, no así en HC, grasas o proteínas; los sujetos TT a mayor ingesta de fibra, mayor riesgo de DM2. Sin embargo para los portadores del alelo C un alto consumo de este nutriente se asoció inversamente con la incidencia de la patología.
Cabe destacar, que en la revisión no se encuentran interacciones significativas entre las proteínas y el genotipo para el desarrollo de DM2.
Por último, con respecto a los micronutrientes, sólo Hosseini-Esfahani et al. (43) en el estudio que realizaron para el SNP rs1326634C>T del gen SLC30A8, mostró en su estudio junto a los AGPI n-3, una interacción estadísticamente significativa entre el zinc y dicho polimorfismo, de manera que igual que ocurría para estos ácidos grasos, a mayor ingesta de zinc en la dieta, menor riesgo presentaban los homocigotos CC de padecer DM2; en los portadores del aleto dominante (T) no se observaba este efecto.
Para los 4 artículos restantes, ni Villegas R et al. en su análisis con HC, ni Ortega-Azorín C et al. para el folato, ni Kim J et al. y Meidtner K et al. en sus estudios para el hierro, encontraron interacción estadísticamente significativa con los genes CDKAL1, FTO, ADAMT59, CDKN2A/2B, IGFBP2, THADA, NOTCH2, TSPAN8-LGRS (37), FTO/MC4R (31), HFE (45).
Tabla 5. Resumen resultado de la interacción gen-nutriente sobre el riesgo de DM2 |
|||||
Referencia |
Gen |
Polimorfismo |
Nutriente |
p-interacción |
Efecto |
Ruchat S-M et al. 2010 (22 ) |
TCF7L2 |
rs12573128 |
Lípidos |
0,0004 |
Los sujetos AA a menor ingesta de lípidos (≤31,4%) menor riesgo DM2, con respecto a portadores del alelo G (p=0,007) |
Corella D et al. 2011 (24) |
APOA2 |
-265T>C |
AGS |
Asiáticos: 0,026 |
Los sujetos CC a ingestas ≥ 22 g/d de AGS presentan una tendencia a mayor riesgo DM2 de (p=0,08) |
Caucásicos: 0,927 |
|
||||
Lamri A et al. 2012 (27) |
PPARγ |
Pro12Ala |
Lípidos |
0,05 |
Los sujetos ProPro a mayor ingesta de lípidos mayor riesgo de DM2 (p=0,04) |
1431C>T |
0,05 |
Los sujetos CC a mayor ingesta de lípidos mayor riesgo de DM2 (p=0,001) |
|||
Mansego ML et al. 2012 (29) |
FABP1 |
rs2197076 |
Alta ingesta lípidos |
0,909 |
|
Baja ingesta lípidos |
|||||
Hindy G et al. 2012 (30) |
TCF7L2 |
rs7903146 |
HC |
0,91 |
|
Lípidos |
0,47 |
||||
Proteínas |
0,70 |
||||
Fibra |
0,049 |
Los sujetos CC a mayor ingesta de fibra menor riesgo de DM2 (p=0,025) con respecto a CT (p=0,77) y TT (p=0,62) |
|||
Ortega-Azorín C et al. 2012 (31) |
FTO |
rs9939609 |
Folato |
0,745 |
|
MC4R |
rs17782313 |
0,667 |
|||
Ericson U et al. 2013 (32) |
IRS1 |
rs2943641 |
HC |
0,01 |
En mujeres TT a menor ingesta de HC menor riesgo de DM2 (p=0,04) con respecto a CC (p=0,10) y CT (p=0.60) |
Lípidos |
0,02 |
Las hombres TT a menor de lípidos existe una tendencia a menor riesgo de DM2 (p=0,06) con respecto a CC (p=0,17) y CT (p=0.38) |
|||
Proteínas
|
0,68 |
|
|||
Fibra
|
0,23 |
||||
Tabla 5. Resumen resultado de la interacción gen-nutriente sobre el riesgo de DM2 (continuación) |
|||||
Referencia |
Gen |
Polimorfismo |
Nutriente |
p-interacción |
Efecto |
Villegas R et al. 2014 (37) |
CDKAL1 |
rs471253 |
HC
Fibra |
p>0,05 |
|
FTO |
rs8050136 |
||||
ADAMT59 |
rs4607103 |
||||
CDKN2A/2B |
rs1801282 |
||||
IGFBP2 |
rs4402960 |
||||
THADA |
rs7578597 |
||||
NOTCH2 |
rs1092398 |
||||
TSPAN8-LGRS |
rs7961581 |
||||
Kim J et al. 2017 (42) |
CDKAL1 |
rs9465871 |
Hierro |
Hombre: 0,876 |
|
Mujer: 0,513 |
|||||
JMJD1C |
rs10761745 |
Hombre: 0,363 |
|||
Mujer: 0,147 |
|||||
KCNQ1 |
rs163177 |
Hombre: 0,131 |
|||
Mujer: 0,915 |
|||||
Hosseini-Esfahani F. et al. 2017 (43) |
SLC30A8 |
rs1326634C>T |
AGPI n-3 |
0,009 |
Los sujetos CC a mayor ingesta de AGPI n-3 menor riesgo de DM2 (p=0,001); no se observa este efecto en portadores del alelo T (0,65) |
Zinc |
0,05 |
En los sujetos CC a mayor ingesta de Zn menor riesgo de DM2 (p=0,007); no se observa este efecto en portadores del alelo T (p=0,43) |
|||
Schüler R et al. 2017 (44) |
ACE |
rs4343 |
Lípidos<37% |
0,267 |
|
Lípidos≥37% |
Los sujetos GG a ingestas de lípidos ≥37% mayor riesgo de DM2, con respecto a portadores del alelo A(p<0,05) |
||||
Meidtner K et al. 2018 (45) |
HFE |
rs1799945 |
Hierro |
0,32 |
|
rs1800562 |
0,91 |
Fuente: Elaboración propia. AGPI n-3:Ácidos grasos poliinsaturados n-3; AGS: Ácidos grasos saturados;APOA2: Apolipoprotein A2; ACE: Angiotensina converting enzyme; CDKAL1: CDK5 regulatory subunit associated protein 1 like 1; CDKN2A/2B: Cyclin-dependent kinase inhibitor 2A/2B; FABP1: Fatty acid binding protein 1; FTO: Fat mass and obesity; HC: Hidratos de carbono; HFE: Homeostatic iron regulator; IGFBP2: Insulin like growth factor binding protein 2; IRS1: Insulin receptor substrate 1; JMJD1C: Jumonji domain containing 1C; KCNQ1: Potassium voltage-gated channel subfamily Q member 1; MC4R: Melanocortin-4 receptor; PPARγ: Perosixome proliferator-activated receptor γ; TCF7L2: Transcription factor 7-like 2; THADA: Thyroid adenoma associated; TSPAN8: Tetraspanin-8; SLC30A8: Solute carrier family 30 member 8.
Se identificaron 11 artículos que estudiaron el efecto de la interacción gen-nutriente sobre la RI, los cuales todos reflejaron interacciones estadísticamente significativas, excepto 1 (tabla 6).
En relación a los lípidos, de los 5 artículos que analizaron la interacción de la genética con los ácidos grasos, 3 artículos hacen referencia a lípidos totales, de los cuales 2 si reflejaron interacción estadísticamente significativa (23, 33) y en 1 no (38); y en 2 artículos se estudia la interacción con AGPI (25,35), entre los cuales, el último se centra concretamente en la relación de AGPI n-3:n-6.
Phillips et al. (23), en el estudio LIPGENE-SU.VI.MAX encontraron una interacción estadísticamente significativa entre el polimorfismo rs4766587 y los lípidos totales, donde los portadores del alelo A, a mayor ingesta de lípidos presentaban un incremento en la RI. Por su parte Xu M et al. (33) mostraron en su estudio, que a mayor ingesta de lípidos por parte de sujetos que portaban el alelo C del SNP rs1440581, peores datos en relación a la RI, con respecto a homocigotos TT.
Phillips et al. (23) y Xu M et al. (33) proponen un aumento de la RI ante alta ingesta de lípidos totales en portadores del alelo A para el gen ACC2 y portadores del alelo C para el gen PPM1K, respectivamente.
En el análisis concreto de los AGPI, Morcillo S et al. (25), detectaron en una población de 824 sujetos del sur de España una interacción de estos ácidos con el SNP rs6824447, de la elongasa ELOVL6, y su influencia en la RI; así los homocigotos GG, a mayor ingesta de AGPI presentaban menores valores de HOMA-IR, con respecto a los portadores del alelo A. En la misma línea, Zheng JS et al (35) detectaron en su estudio realizado en dos poblaciones distintas (europea-americana (GOLDN) y puertorriqueña (BPRHS)), interacciones estadísticamente significativas entre distintos polimorfismos del gen PIK3CA-KCNMB3 con los AGPI de la dieta para modular determinados parámetros del metabolismo de los HC, especialmente HOMA-IR. Los sujetos TT para el polimorfismo rs7645550, AA para rs1183319 y TT para rs7642066, mostraban valores de RI inferiores cuando la relación de AGPI n-3/n-6 aportada en la dieta es menor a 0,11.
En cuanto al análisis de la interacción entre distintas proporciones de AGS e HC y la genética, encontramos 3 artículos que las estudian (26, 34, 41). Qi A et al. (26), observaron que individuos con genotipo T para el polimorfismo rs2943641 del gen IRS1 obtenían beneficios en la pérdida de peso y en la RI, en comparación con los portadores del alelo dominante en dietas con alta proporción de HC, a diferencia que en sujetos sin este genotipo. En la misma línea están los siguientes estudios de Smith CE et al. (26) para el SNP 11482G>A del gen PLIN, donde demostraron que homocigotos para el alelo recesivo (A) tenían mayor RI con dietas con alta proporción de AGS y baja de HC. Por último, Blanco-Rojo R et al. (41), en 2 de las 3 poblaciones de su estudio (CORDIOPREV, GOLDN y BPRHS), mostramos una interacción significativa entre el rs3014866 SNP y la ratio AGS:HC para el HOMA-IR, así homocigotos CC tenían un HOMA-IR significativamente mayor cuando la relación AGS:HC era alta, pero no cuando era baja.
Smith CE et al. (26) y Blanco-Rojo R et al. (41) sugieren un aumento de la RI para los genes PLIN (homocigotos AA) y S100A9 (homocigotos CC), a mayor ingesta de AGS en detrimento de los HC; en cambio Qi A et al. (26) detecta una disminución de este parámetro para portadores del alelo T en el gen IRS1 ante una alta ingesta de HC en relación con los AGS.
Zheng JS et al. (34) en estudios realizados con ácidos grasos monoinsaturados (AGMI), detectaron que portadores del alelo G para el polimorfismo rs7578326 y del alelo T para el polimorfismo rs2943641 del gen IRS1 tenían un menor riesgo de RI, DM2 y SM cuando en la dieta la relación entre AGMI e HC era baja.
En 1 de los artículos se encuentra una interacción estadísticamente significativa entre los HC y el genotipo. Zhang S et al. (40) observaron en sujetos CC para el polimorfismo rs328G del gen LPL menor RI cuando se sometían a una dieta en la que la proporción de HC era relativamente mayor a la de grasas; además detectaron que un aumento de HC en la dieta se relacionaba positivamente con un aumento en la relación insulina:HOMA-IR en individuos portadores de este polimorfismo.
En 1 artículo, se halla una interacción estadísticamente significativa entre las proteínas y el genotipo, sobre la RI (39). En el artículo de Qi A et al. (39) en el que se estudiaron 3 genes distintos (DHCR7 (rs12785878), CYP2R1 (rs10741657), GC (rs2282679), sólo encontraron una interacción estadísticamente significativa para el gen DHCR7, así homocigotos GG del polimorfismo rs12785878 a mayor ingesta de proteínas en la dieta, menor RI con respecto a los portadores el alelo T.
Por último, indicar que no se hallaron interacciones estadísticamente significativas entre el genoma y los micronutrientes en general con respecto a la RI.
Tabla 6. Resumen resultado de la interacción gen-nutriente sobre RI |
|||||
Referencia |
Gen |
Polimorfismo |
Nutriente |
p-interacción |
Efecto |
Phillips CM et al. 2010 (23) |
ACC2 |
rs4766587 |
Lípidos |
0,04 |
Los sujetos portadores del alelo A a mayor ingesta de lípidos mayor RI (p=0,027) |
Morcillo S et al. 2011 (25) |
ELOVL6 |
rs6824447 |
AGPI |
0,001 |
Los sujetos GG a mayor ingesta de aceite de girasol menor RI |
Qi Q et al. 2011 (26) |
IRS1 |
rs2943641 |
AGS:HC |
0,009 |
Los sujetos portadores del alelo T a mayor ingesta de HC menor RI (p=0,0125) con respecto a homocigotos GG. |
Smith CE et al. 2012 (28) |
PLIN |
11482G>A |
AGS:HC |
0,031 |
Los sujetos AA a ratio AGS:HC ≥ 0,23 mayor RI (p=0,004) con respecto a los sujetos portadores del alelo T |
Xu M et al. 2013 (33) |
PPM1K |
rs1440581 |
Lípidos |
0,006 |
Los sujetos TT mostraban una mejor RI ante la ingesta de lípidos (0,04) con respecto a los portadores del alelo C (0,02) |
Zheng JS et al. 2013 (34) |
IRS1 |
rs7578326 |
AGMI |
0,024 |
Los sujetos portadores G a ingesta ≤13,2% AGMI menor RI con respecto a AA (p=0,0008) |
AGS |
0,019 |
Los sujetos portadores G a ingesta ≤11,8% AGS menor RI con respecto a AA (p=0,0009) |
|||
HC |
0,009 |
Los sujetos portadores G a ingesta >49,1% HC menor RI con respecto a AA (p=0,0005) |
|||
AGS:HC |
0,003 |
Los sujetos portadores G con ratios AGS:HC ≤0,24 menor RI con respecto a AA (p=0,0001) |
|||
rs2943641 |
AGMI |
0,008 |
Los sujetos portadores T a ingesta ≤13,2% AGMI menor RI con respecto a CC (p=0,0005) |
||
AGS |
0,010 |
Los sujetos portadores T a ingesta ≤11,8% AGS menor RI con respecto a CC (p=0,0005) |
|||
HC |
0,002 |
Los sujetos portadores T a ingesta >49,1% HC menor RI con respecto a CC (p=0,0002) |
|||
AGS:HC |
0,003 |
Los sujetos portadores T con ratios AGS:HC ≤0,24 menor RI con respecto a CC (p=0,0001)
|
|||
Tabla 4. Resumen resultado de la interacción gen-nutriente sobre RI (continuación) |
|||||
Referencia |
Gen |
Polimorfismo |
Nutriente |
p-interacción |
Efecto |
Zheng JS et al. 2013 (35) |
PIK3CA- KCNMB3 |
rs7645550 |
AGPI n-3:n-6 |
0,033 |
Los sujetos TT a ingestas AGPI n-3:n—6 ≤0,11 menor RI (p=0,001) |
rs1183319 |
0,001 |
Los sujetos AA a ingestas AGPI n-3:n—6 ≤0,11 menor RI (p=0,001) |
|||
rs7642066 |
0,018 |
Los sujetos TT a ingestas AGPI n-3:n—6 ≤0,11 menor RI (p=0,040) |
|||
Zheng Y et al. 2015 (38) |
FTO |
rs1558902 |
Lípidos |
0,28 |
|
rs9939609 |
0,44 |
|
|||
Qi Q et al. 2015 (39) |
DHCR7 |
rs12785878 |
Proteínas |
0,0009 |
Los sujetos GG a mayor ingesta de proteínas menor RI (p=0,002), con respecto a individuos portadores de T
|
CYP2R1 |
rs10741657 |
p>0,05 |
|
||
GC |
rs2282679 |
|
|||
Zhang S et al. 2015 (40) |
LPL |
rs328G |
HC |
p<0,05 |
Sujetos portadores de G a mayor ingesta de HC mayor RI (p=0,021) con respecto a sujetos CC |
Fibra |
p>0,05 |
|
|||
Lípidos |
|||||
rs285 |
HC |
p>0,05 |
|
||
Fibra |
|
||||
Lípidos |
|
||||
Blanco-Rojo R et al. 2016 (41) |
S100A9 |
rs3014866 |
AGS:HC |
CORDIOPREV: 0,007 |
Sujetos CC a mayor ratio AGS:HC mayor RI (p=0,029) con respecto a los portadores T |
BPRHS: 0,027 |
Sujetos CC a mayor ratio AGS:HC mayor RI (p=0,029) con respecto a los portadores T |
||||
GOLDN: 0,320 |
|
Fuente: Elaboración propia. AGMI: Ácidos grasos monoinsaturados; AGPI n-3/-6: Ácidos grasos poliinsaturados n-3/n-6; AGS: Ácidos grasos saturados; ACC2: Acetyl-CoA β; DHCR7: 7-dehydrocholesterol reductase; ELOVL6: Elongation of very long chain fatty acids 6; FTO: Fat mass and obesity; HC: Hidratos de carbono; IRS1: Insulin receptor substrate 1; KCNMB3: Potassium large conductance calcium-activated channel M beta member 3; LPL: Lipoprotein lipase; PIK3CA: Phosphatidylinositol 3-kinase clase a; PLIN: Perilipina; PPMIK: PP2C domain-containing protein phosphatase 1K; PP2C: Protein phosphatase 2C; S100A9: S100 calcium-binding protein A9
En la tabla 7 se resumen los resultados de los 3 artículos que estudian el efecto de la interacción gen-nutriente sobre la homeostasis de la glucosa: 1 artículo trata la interacción solo con lípidos (46) y 2 artículos tratan la interacción solo con HC (36, 38). De los 3, en 2 se encontró efectos estadísticamente significativos.
Con respecto a los lípidos, y en concordancia con todos los estudios analizados anteriormente del gen FTO y los efectos deletéreos para la salud ante altas ingestas de lípidos, Zheng Y et al (38) encontró una interacción estadísticamente significativa en la que los portadores del alelo A para el SNP rs1558902 a menor ingesta de lípidos, menores valores de glucosa plasmática en ayunas.
Por su parte, Hwang JY et al (36) encontraron en su estudio una relación dosis-dependientes entre la ingesta de HC y el polimorfismo 276G>T, así homocigotos GG, a mayor ingesta de este macronutriente, mayores valores de glucosa en sangre en ayunas con respecto a los portadores de T.
Cabe destacar que no han detectado interacciones significativas ni con proteínas, ni con el resto de micronutrientes, con respecto a la homeostasis de la glucosa.
Tabla 7. Resumen resultado de la interacción gen-nutriente sobre homeostasis de la glucosa |
|||||
Referencia |
Gen |
Polimorfismo |
Nutriente |
p-interacción |
Efecto |
Hwang J-Y et al. 2013 (36) |
Adiponectina |
276G>T |
HC |
p<0,05 |
Los sujetos GG a ingestas de HC <55% mayor glucosa en sangre en ayunas con respectos a portadores T (p=0,027); en cambio, GG a ingestas de HC >65% menor glucosa en sangre en ayunas con respecto a portadores T (p=0,020) |
Zheng Y et al. 2015 (38) |
FTO |
rs1558902 |
Lípidos |
0,003 |
Sujetos portadores de alelo A a menor ingesta lípidos menor tendencia al aumento de glucosa en sangre con respecto a individuos TT (p=0,06) |
rs9939609 |
0,20 |
|
|||
Griffin BA et al. 2018 (46) |
APOE |
APOE4 APOE2 APOE3/E3 |
HC |
0,60 |
|
Fuente: Elaboración propia. APOE4: Apolipoprotein E4; FTO: Fat mass and obesity; HC: Hidratos de carbono.
En la tabla 8 se resumen las principales funciones de los genes que se estudian en las interacciones con los nutrientes y que tienen efectos sobre la DM2, la RI o la homeostasis de la glucosa.
Tabla 8. Resumen funciones genes involucrados en la interacción |
||
Gen |
Función/es |
Referencia |
ACC2 |
Codifica una enzima fundamental en el metabolismo de los ácidos grasos, tanto en la ruta de síntesis como en la de oxidación de los mismos. |
Phillips CM et al. 2010 (23) |
ACE |
Codifica la ACE, una enzima que cataliza la conversión de angiotensina I en angiotensina II, en el SRAA |
Schüler R et al. 2017 (44) |
ADIPOQ |
Codifica la adiponectina, secretada fundamentalmente por el tejido adiposo y funciona como un modulador de los niveles de glucosa en plasma o la sensibilidad a la insulina, entre otras. |
Hwang J-Y et al. (36) |
APOA2/E4 |
Codifica la apolipoproteína A-II, encargada de contener y transportar lípidos en el plasma.
|
Corella D et al. 2011 (24) Griffin BA et al. 2018(46)
|
CDKAL1 |
Codifica la KCNQ1, una proteína que forma parte de los canales de potasio dependientes de voltaje; sus funciones son mantener potenciales de membrana o regular procesos osmóticos. |
Villegas R et al. 2014 (37) Kim J et al. 2017 (42) |
DHCR7 |
Codifica la DHCR7, enzima que cataliza la producción de colesterol. |
Qi Q et al. (29) |
ELOVL6 |
Codifica la ELOVL6, que es una elongasa de AGS con 12, 14 y 16 átomos de carbono de tejidos lipogénicos y regulada por SREBP-1. |
Morcillo S et al. (17) |
FABP1 |
Codifica la fatty acid binding proteins, proteína citosólica de unión a lípidos y que regula su transporte y metabolismo |
Mansego ML et al. (29) |
FTO |
FTO es un gen relacionado estrechamente con la obesidad, cuyos principales mecanismos son control hipotalámico de la saciedad y la ansiedad ante restricción de comida |
Ortega-Azorín C et al. (31) Zheng Y et al. (38) Villegas R et al. 2014 (37) |
HFE |
Codifica la High FE2+ (HFE), una proteína reguladora de la homeostasis del hierro. |
Meidtner K et al. (45) |
IRS1 |
Codifica el Insulin Receptor Substrate 1, que es una proteína clave en la transmisión de señales de los receptores de insulina y del IGF-1 |
Qi Q et al. 2011 (26) Ericson U et al. 2013 (32) Zheng JS et al. 2013 (34) |
LPL |
Codifica la lipoprotein lipasa una enzima que hidroliza los triglicéridos en ácidos grasos y glicerol. |
Zhang S et al. (40) |
MC4R |
Este gen expresa un receptor de la hormona estimulante de α-melanocitos (α-MSH), la cual se relaciona con la ingesta de alimentos y la homeostasis energética. |
Ortega-Azorín C et al. (31)
|
Tabla 6. Resumen funciones genes involucrados en la interacción (continuación) |
||
Gen |
Función/es |
Referencia |
|
|
|
PIK3CA KCNMB3 |
PIK3CA es una proteína de transmisión de señales; KCNMB3 es uno de los componentes de los canales BK (homeostasis de la glucosa y secreción de insulina). |
Zheng JS et al. (35) |
PLIN |
Codifica la perilipina es una lipasa sensible a hormona muy abundante en adipocitos que facilita la lipolisis de triglicéridos |
Smith CE et al. 2012 (28) |
PPARγ |
Codifica el receptor nuclear PPARγ que tiene la capacidad de unirse a multitud de ligandos para actuar inducción o inhibiendo la transcripción del ADN. |
Lamri A et al. 2012 (27) |
PPM1K |
Codifica la protein phosphatase Mg2+/Mn2+ dependent 1K, que pertenece a una familia de 11 proteínas que requieren estos minerales divalentes y que se relacionan con la insulina. |
Xu M et al. (33) |
S100A9 |
Codifica la calgranulina B, una proteína con múltiples funciones a nivel intra y extracelular; control de fosforilación, factor de transcripción, homeostasis del calcio, etc. |
Blanco-Rojo R et al. (41) |
SLC30A8 |
Codifica la ZNT8, un transportador de zinc que se expresa fundamentalmente en las células β pancreáticas, para introducir este mineral en su interior durante la síntesis de insulina. |
Hosseini-Esfahani F et al. (43)
|
TCF7L2 |
Codifica el Trascription Factor 7-Like 2 es un factor de transcripción que participa en la homeostasis de la glucosa y en la secreción de insulina por parte de las células β del páncreas. |
Ruchat S-M et al. 2010 (22) Hindy G et al. 2012 (30) |
Fuente: Elaboración propia. ACC2: Acetyl-CoA β; ACE: Angiotensina converting enzyme; APOA2/E4: Apolipoprotein A2/E4; CDKAL1: CDK5 regulatory subunit associated protein 1 like 1; DHCR7: 7-dehydrocholesterol reductase; ELOVL6: Elongation of very long chain fatty acids 6; FABP1: Fatty acid binding protein 1; FTO: Fat mass and obesity; HFE: Homeostatic iron regulator; IRS1: Insulin receptor substrate 1; LPL: Lipoprotein lipase; MC4R: Melanocortin-4 receptor; PIK3CA: Phosphatidylinositol 3-kinase clase a; PLIN: Perilipina; PPARγ: Perosixome proliferator-activated receptor γ; PPMIK: PP2C domain-containing protein phosphatase 1K; PP2C: Protein phosphatase 2C; S100A9: S100 calcium-binding protein A9; SLC30A8: Solute carrier family 30 member 8; TCF7L2: Transcription factor 7-like 2.
El proyecto Genoma Humano ha supuesto un hito histórico en cuanto al conocimiento genético de multitud de mecanismos fisiopatológicos, y como consecuencia se han realizado muchos estudios GWAs que han permitido la identificación de varios genes de susceptibilidad a DM2 y otras enfermedades metabólicas.
Como se ha expuesto a lo largo del desarrollo de la revisión bibliográfica, la mayoría de los mecanismos fisiopatológicos inducidos por la interacción a nivel genético afectan a la funcionalidad de las células β pancreáticas, y el resto se relacionaban con la resistencia RI (3); además en esta alteración de su función intervienen multitud de genes y de factores ambientales, entre los que cabe destacar la actividad física del individuo y la propia dieta (22).
De entre los nutrientes que se ingieren habitualmente, se han identificado los lípidos como un modificador importante en cuanto a las posibles interacciones con genes relacionados con el aumento del riesgo de la DM2 y la alteración de la homeostasis de la glucosa (22). Esto se debe a que los ácidos grasos actúan como “moléculas de señalización” con capacidad de producir cambios a nivel genético, fundamentalmente a través de factores de transcripción, y por tanto en su traducción a proteínas y metabolitos (10). Ruchat et al. (22), examinaron los efectos de las posibles interacciones de estos genes con los ácidos grasos de la dieta, y cómo éstos influyen en la alteración metabólica que se produce en la diabetes. Sus resultados sugieren que algunos de estos genes de susceptibilidad de DM2 interactúan con los lípidos para influir en los rasgos relacionados con la adiposidad y la homeostasis de la glucosa; sin embargo, la mayoría de los SNP identificados no alcanzaron un nivel estadísticamente significativo, excepto el SNP rs12573128 del gen TCF7L2. Así, los homocigotos para el alelo recesivo (A) obtenían menor riesgo con la ingesta de dietas bajas en lípidos. Este efecto es debido fundamentalmente a la mejora en la sensibilidad a la insulina como consecuencia de la regulación que este factor de transcripción produce en los niveles de glucosa en muchos órganos diana (fundamentalmente páncreas, hígado y tejido adiposo). En cambio portadores del alelo dominante (G) a pesar de obtener valores bajos de HOMA-IR tras baja ingesta de grasas, presentaban hiperglucemia en ayunas, lo cual evidencia un defecto de las células β, y por tanto no presentan ese efecto protector ante el riesgo de DM2.
Este mecanismo es similar al que ocurre en el caso del gen PPARγ, es decir, la menor expresión del mismo se traduce en una menor activación de los genes diana debido a una capacidad mermada de unión al ADN, y por tanto una capacidad adipogénica reducida, mejorando la homeostasis de la glucosa (27). PPARγ es un factor de transcripción que regula genes dianas que a su vez median en el metabolismo de los lípidos y en la diferenciación de los adipocitos (6). Lamri A et al. (27) en el estudio DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) hallaron que los polimorfismos Pro12Ala y 1431C>T se relacionaban con el riesgo de DM2, concretamente que la ingesta de lípidos en los homocigotos ProPro y CC respectivamente aumentaba el riesgo de padecer la patología. Otro estudio que apoya el análisis de los artículos en los que se postula que una alta ingesta de los lípidos totales en la dieta aumenta el riesgo de padecer DM2 es el mostrado por Schüler R et al. (44). Sus resultados mostraron que la ingesta de grasas en la dieta modulaba la asociación del SNP rs4343 con el metabolismo de la glucosa y la RI en sujetos sanos y no obesos. Así, los homocigotos GG para el polimorfismo respondieron desfavorablemente a dietas altas en grasas, con un mayor riesgo de alteración del metabolismo de la glucosa y la RI. Esos resultados se explican porque la inhibición de la enzima transformadora de angiotensina (angiotensin-converting enzime ó ECA), acción que antagoniza con la actividad del sistema renina-angiotensina, mejora la homeostasis de la glucosa, y por tanto reduce la incidencia de la patología.
Corella D et al. (24), fueron los primeros en intentar aportar información acerca de la interacción del gen APOA2 y las grasas, y su influencia en la DM2, y aunque no se conocía el mecanismo, había una relación entre dicho gen y aspectos relacionados como el metabolismo de las lipoproteínas, la RI o la obesidad. Así, los individuos asiático homocigotos CC se asociaron con una expresión más baja de este gen y por tanto con niveles bajos de high density lipoprotein (HDL), ácidos grasos libres, glucosa o insulina, y así con un aumento de la sensibilidad a la insulina. En los individuos caucásicos no se observa esta relación, previsiblemente porque la población mediterránea tiene alto riesgo de DM2 y la mayoría de éstos se diagnosticaron previamente al estudio. No se observó interacción significativa en el estudio de Mansego ML et al. (29), sobre los sujetos del estudio Ortega y Segovia, en los cuales se pretendían estudiar la interacción del polimorfismo rs2197076 del gen FABP y los AGS y AGPI, sobre el riesgo de DM2 y la RI. En estudios anteriores, Marín C et al. (57), en un meta-análisis demostraron que la sensibilidad a la insulina mejoró en sujetos con el alelo Thr54 del polimorfismo FABP2 cuando los AGS fueron reemplazados por AGMI e HC.
La proteína codificada por el gen SLC30A8 es un transportador de salida de zinc necesario para que este catión divalente se acumule a nivel intracelular y de lugar a la biosíntesis y maduración de la insulina; por este motivo este gen se expresa especialmente en los islotes pancreáticos. De este gen se han encontrado distintos polimorfismos que aumentan el riesgo de DM2, de hecho el SNP rs13266634C>T se asoció con una disminución de la función de las células β, y un aumento del 14% de padecer DM2 (6). El estudio de Hosseini-Esfahani F et al. (43), aporta información sobre el efecto que tienen los nutrientes en la secreción de la insulina por parte de las células β a través de la interacción con los genes, de manera que:
Otro punto importante en el metabolismo de los hidratos de carbono está en que la insulina sea capaz de producción su acción, es decir que ante un aumento de la glucosa plasmática se pongan en marcha las distintas rutas metabólicas para que la unión de esta hormona con su receptor de lugar a la captación de la hexosa por parte de las células diana. En cuanto a la acción de la insulina se han revisado dos artículos que aluden por un lado a la interacción hormona-receptor y otro a la propia secreción de la misma. El gen IRS1 codifica el sustrato 1 del receptor de insulina, proteína fundamental para la señalización de la insulina, ya que cuando esta hormona se une a su receptor se produce la fosforilación del IRS1, marcando el inicio de una cascadas de reacciones que produce finalmente el efecto deseado. El estudio de Ericson U et al. (32), entre el SNP rs2943641 y los macronutrientes de la dieta, y su distinta influencia según el sexo, demostró que una baja ingesta de HC se asoció con un menor riesgo de diabetes tipo 2 en homocigotas TT, mientras que la baja ingesta de grasas tendió a estar asociada con una disminución del riesgo en homocigotos TT.
Qi Q et al. (26), que en su ensayo POUNDS LOST, sugieren que una dieta baja en HC tiene un efecto más positivo sobre la sensibilidad a la insulina entre los portadores del alelo T que entre los portadores CC, mientras que una dieta alta en HC tiene un efecto más positivo entre los portadores CC.
Respecto a la fibra, Hindy et al. (30), en su estudio MDCS, mostraron que una ingesta alta de esta HC mejoró los niveles de insulina y glucosa plasmática en ayunas; en cambio, el riesgo de DM2 aumentó en individuos portadores del alelo de riesgo TCF7L2 rs7903146 ante un consumo elevado de fibra. No se observó interacción entre los polimorfismos y el consumo de carbohidratos, grasas o proteínas y la incidencia de DMT2 en la cohorte de MDCS.
Los resultados obtenidos sugieren que la interacción entre el genotipo y fundamentalmente las grasas de la dieta tiene la capacidad de modificar la RI.
La acetil-CoA carboxilasa α (ACC1) y la acetil-CoA carboxilasa β (ACC2) catalizan la carboxilación del acetil-CoA a malonil-CoA, y a su vez regulan la velocidad de entrada de ácidos grasos a la mitocondria y la oxidación de ácidos grasos. Por lo tanto, ACC1 y ACC2 son reguladores clave de la síntesis de ácidos grasos y las vías de oxidación (24). La acumulación del exceso de ácidos grasos es un factor de riesgo para desarrollar RI, SM y DM2. Phillips et al. (23), demostraron que el SNP rs4766587 del gen ACC2 se asoció a un aumento del 30% de riesgo de SM, relación que se explica por el aumento de la grasa abdominal y de la RI. Se ha observado que una dieta equilibrada y el ejercicio físico conducen a un mejor control glucémico y una menor adiposidad, y por tanto regulan negativamente la expresión de ACC2. Otros estudios señalan que la expresión del gen ACC está bajo control hormonal y nutricional, y que los AGPI n-3 y n-6 han demostrado reducir la expresión de ACC in vitro (59). Aunque Phillips et al. (23) proporcionan evidencia de que la calidad de la grasa en la dieta puede influir en la expresión de ACC2, los autores no examinaron si la cantidad de grasa en la dieta altera la expresión de ACC2 (23).
En el estudio de Morcillo S et al. (25), estudiaron la importancia del papel de ELOVL6 en el metabolismo energético y la RI. Por otra parte, Matsuzaka et al. (60), observaron que la eliminación de la elongasa ELOVL6 en ratones de laboratorio prevenía la RI inducida por la dieta, sin mejorar la obesidad o la hepatoesteatosis. Esta deficiencia afecta tanto a la síntesis como al metabolismo secundario de ácidos grasos a niveles hepáticos, lo cual podría reducir los niveles de factores de transcripción, tales como SREBP-1 y PPARγ. La reducción en SREBP-1 conduce a una disminución de la síntesis de ácidos grasos a través de la reducción de la expresión de genes lipogénicos y aumenta la expresión de los niveles de IRS-2 y la sensibilidad a la insulina. Morcillo S et al. (25) demostraron que los homocigotos GG para el polimorfismo rs6824447, a mayor consumo de AGPI, aportado en la dieta a través de aceite de girasol y de oliva, presentaban menores valores de HOMA-IR, con respecto a los portadores del alelo A.
El efecto beneficioso de los AGPI n-3 en relación a la posible prevención de la DM2 y la mejora de la RI es un tema discrepante, debido fundamentalmente a las complejas interacciones que se producen entre el genotipo y los factores ambientales (35). A pesar del descubrimiento continuo de nuevos polimorfismo asociados con la RI, se conoce relativamente poco acerca de las interacciones del genoma con la ingesta de ácidos grasos en el desarrollo de esta alteración. Zheng JS et al. (35) en su estudio analizaron el gen PIK3CA, que codifica la subunidad catalítica p110a de fosfatidilinositol-3-quinasa (PI3K) Clase-IA, mediador clave de la señalización de la insulina e implicado en patologías tan relevantes como la diabetes o el cáncer. PI3K es activado tras la unión de la insulina a su receptor, y posteriormente cataliza la activación de multitud de reacciones en cadena que llevan a la absorción de glucosa y la síntesis de glucógeno (35). Por su parte, el gen KCNMB3, codifica una de las proteínas que constituyen los canales de potasio dependientes de calcio situados en la membrana de las células β pancreáticas, y es en gran parte responsable de la secreción de la insulina (35). Estos autores, en sus análisis sobre tres polimorfismos de PIK3CA-KCNMB3 (rs7645550, rs1183319 y rs7642066) hallaron en poblaciones de distinta ascendencia (europea, estadounidense y puertorriqueña) que la relación AGPI n-3: n-6 de la dieta modulan la RI.
Otro gen relacionado con el metabolismo lipídico, e implicado en trastornos como la diabetes, la obesidad, el aumento de peso y la RI, es PLIN. En su estudio Smith CE et al. (28) demostraron una interacción estadísticamente significativa entre el polimorfismo PLIN 11482 G> A con la ingesta dietética de grasas y carbohidratos (28). Así, las mujeres homocigotas para el alelo recesivo A mostraban mayor RI cuando la relación entre ingesta de AGS e HC era baja (6).
Otro aspecto clave para el desarrollo de la RI es la capacidad de la hormona para desempeñar su función sobre las células diana; a este respecto, la proteína IRS1, codificada por el gen IRS1, es fundamental para su correcta señalización. Zheng JS et al. (34) relacionaron los polimorfismos rs7578326 y rs2943641 de dicho gen con la RI en dos poblaciones de etnias diferentes. Estas asociaciones estaban moduladas por distintos factores dietéticos, especialmente la proporción de AGMI e HC, de manera que un menor consumo de grasas en general, y de AGMI en particular, junto con un aumento en la ingesta de HC producían una disminución de la RI y la insulina plasmática (34).
En relación con la acción de la insulina, el gen S100A9, codifica la proteína de unión al calcio S100A9 (calgranulina B) (6). En el estudio de Blanco-Rojo R et al. (41) realizado sobre 3 poblaciones muy distintas entre sí (CORDIOPREV, GOLDN Y BPRHS) observaron que los homocigotos CC para el polimorfismo rs3014866 C>T tenían valores de HOMA-IR más alto que los individuos portadores del alelo T cuando la proporción de AGS:HC era alta, efecto que se revertía cuando dicha relación disminuía (41).
En el estudio de Zheng et al (38), ya comentado anteriormente por su relación con la RI, investigaron si la composición de macronutrientes en la dieta interaccionaban con distintos polimorfismos del gen FTO, y su efecto sobre la homeostasis de la glucosa en su ensayo de intervenciones dietéticas para perder peso. Detectaron que los portadores del alelo A para el polimorfismo rs1558902 a menor ingesta de grasas en la dieta mayor control de la homeostasis de la glucosa con respecto a homocigotos TT. Estos hallazgos están en línea con otros estudios europeos de intervención dietética a corto plazo, en los que se observó una interacción significativa entre el gen FTO y la grasa en la dieta en relación con la resistencia a la insulina (38), demostrando que los portadores de la variante FTO pueden beneficiarse de manera diferente de las dietas altas en grasa para mejorar la RI que de las dietas bajas en grasas (6). En este estudio observaron que los portadores obesos del SNP rs9939609, mostraron una mayor disminución en la RI con dietas altas en grasas con respecto a dietas bajas en grasas. La discrepancia entre el estudio de la población asiática propuesto por Zheng Y et al. (38) y el estudio europeo podría explicarse por la heterogeneidad genética entre ambas, y a la diferencia frecuencia alélica de los distintos SNPs.
En relación con la homeostasis de la glucosa, la adiponectina (codificada por el gen ADIPOQ) es una adipocitoquina importante secretada por los adipocitos con un papel clave en la respuesta inflamatoria asociados tanto a la RI como a la DM2. Hwang JY et al. (36) en una población asiática investigaron las posibles interacciones entre polimorfismos de dicho gen con la ingesta de HC y grasas. Hallaron interacciones significativas dosis-respuesta entre el polimorfismo ADIPOQ 276G>T y la ingesta de HC en un estudio prospectivo de 673 pacientes con DM2, y demostraron que la ingesta de este macronutriente modula los niveles de glucosa en sangre en ayunas y la HbA1C (36).
En cuanto a la redacción de la revisión bibliográfica, cabe destacar las siguientes debilidades durante su desarrollo.
Una de las limitaciones que encontramos en la búsqueda bibliográfica es que se tienen en cuenta los últimos 10 años, por lo que parte del contenido anterior a esta fecha, no se ha tenido en cuenta; sin embargo, y como se puede ver a lo largo del desarrollo, las posibles carencias de información se han implementado con bibliografía complementaria. Otra posible limitación hace referencia a la disparidad étnica que encontramos entre los distintos estudios, la cual hace que en muchos casos los resultados no puedan ser comparativos a la hora de sacar conclusiones; en referencia a las características de la población se debe añadir que en algunos de los estudios se encuentran tamaños de muestra relativamente pequeños, lo cual resta potencia estadística. Sin embargo, el hecho de trabajar con poblaciones tan dispares aporta datos importantes acerca de cómo interaccionan los distintos nutrientes con diferentes acerbos genéticos, y así comprender los mecanismos fisiopatológicos con distintos genotipos. Otro aspecto a tener en cuenta es que la información alimentaria que se obtiene en los distintos trabajos, relacionada con el conocimiento de la ingesta de alimentos, y por tanto de nutrientes y energía consumidos en cada grupo poblacional, se obtiene mediante encuestas alimentarias o nutricionales. Las encuestas que se han usado con más frecuencia son los registros dietéticos, los recordatorios de 24 horas o los cuestionarios de frecuencia de consumo, que si bien tienen la limitación de ser en muchos casos subjetivos y por tanto nos pueden presentar sesgos de la recogida de los datos, son los recursos que se tienen en la actualidad, y reducen los recursos a invertir en el estudio, además de ser de amplia distribución y rapidez de obtención de resultados. Se debe añadir la heterogeneicidad en cuanto a las características de las poblaciones objeto de estudio, entre las que encontramos sujetos diabéticos y no diabéticos, obesos y/o con sobrepeso, sanos o con SM, etc. que puede resultar una incidencia a la hora de comparar los resultados de los distintos estudios, sin embargo enriquecen los resultados de la revisión.
Por último cabe resaltar las siguientes fortalezas del mismo. En la revisión se han tenido en cuenta tres parámetros fundamentales en la epidemiología de la diabetes, como son la RI, el riesgo de padecer DM2 y la homeostasis de la glucosa, característica que no se observa en ninguno de los estudios. Además no se ha limitado la revisión a un solo nutriente, se han tenido en cuenta para la búsqueda todos los nutrientes que potencialmente pueden producir interacción genética e influir en la patología.